6to4 Tunnels

Eric de Thouars

Tom Eastep

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover, and with no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

2009/08/24


Table of Contents

Getting your Feet Wet with IPv6, by Tom Eastep
Configuring IPv6
Configuring Shorewall
Configuring Shorewall6
Connecting two IPv6 Networks, by Eric de Thouars

6to4 tunneling with Shorewall can be used to connect your IPv6 network to another IPv6 network over an IPv4 infrastructure. It can also allow you to experiment with IPv6 even if your ISP doesn't provide IPv6 connectivity.

More information on Linux and IPv6 can be found in the Linux IPv6 HOWTO. Details on how to setup a 6to4 tunnels are described in the section Setup of 6to4 tunnels.

Getting your Feet Wet with IPv6, by Tom Eastep

6to4 tunnels provide a good way to introduce yourself to IPv6. Shorewall6 was developed on a network whose only IPv6 connectivity was an 6to4 Tunnel; that network is described in the remainder of this section. What is shown here requires Shorewall6 4.2.4 or later.

Configuring IPv6

I have created an init script to make the job of configuring your firewall for IPv6 easier.

The script is installed in /etc/init.d and configures ipv6, including a 6to4 tunnel, at boot time. Note that the script is included in the Shorewall6 distribution but is not installed in /etc/init.d by default. The RPMs from shorewall.net, install the file in the package documentation directory.

The script works on OpenSuSE 11.0 and may need modification for other distributions. On OpenSuSE, the script is installed by copying it to /etc/init.d/ then running the command 'chkconfig --add ipv6'.

At the top of the script, you will see several variables:

  • SIT - The name of the tunnel device. Usually 'sit1'

  • INTERFACES - local interfaces that you want to configure for IPv6

  • ADDRESS4 - A static IPv4 address on your firewall that you want to use for the tunnel.

  • SLA - The identity of the first local sub-network that you want to assign to the interfaces listed in INTERFACES. Normally one (0001).

  • GATEWAY - The default IPv6 gateway. For 6to4, this is ::192.88.99.1.

Here is the file from my firewall:

SIT="sit1"
ADDRESS4=206.124.146.180
INTERFACES="eth2 eth4"
SLA=1
GATEWAY=::192.88.99.1

eth2 is the interface to my local network (both wired and wireless). eth4 goes to my DMZ which holds a single server. Here is a diagram of the IPv4 network:

Here is the configuration after IPv6 is configured; the part in bold font is configured by the /etc/init.d/ipv6 script.

gateway:~ # ip -6 addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
    inet6 2002:ce7c:92b4:1::1/64 scope global 
       valid_lft forever preferred_lft forever
    inet6 fe80::202:e3ff:fe08:55fa/64 scope link 
       valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
    inet6 fe80::202:e3ff:fe08:484c/64 scope link 
       valid_lft forever preferred_lft forever
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
    inet6 2002:ce7c:92b4:2::1/64 scope global 
       valid_lft forever preferred_lft forever
    inet6 fe80::2a0:ccff:fed2:353a/64 scope link 
       valid_lft forever preferred_lft forever
24: sit1@NONE: <NOARP,UP,LOWER_UP> mtu 1480 
    inet6 ::206.124.146.180/128 scope global 
       valid_lft forever preferred_lft forever
    inet6 2002:ce7c:92b4::1/128 scope global 
       valid_lft forever preferred_lft forever
gateway:~ # ip -6 route ls
::/96 via :: dev sit1  metric 256  expires 21333315sec mtu 1480 advmss 1420 hoplimit 4294967295
2002:ce7c:92b4::1 dev sit1  metric 256  expires 21333315sec mtu 1480 advmss 1420 hoplimit 4294967295
2002:ce7c:92b4:1::/64 dev eth0  metric 256  expires 21333315sec mtu 1500 advmss 1440 hoplimit 4294967295
2002:ce7c:92b4:2::/64 dev eth2  metric 256  expires 21333315sec mtu 1500 advmss 1440 hoplimit 4294967295
fe80::/64 dev eth0  metric 256  expires 20748424sec mtu 1500 advmss 1440 hoplimit 4294967295
fe80::/64 dev eth1  metric 256  expires 20748431sec mtu 1500 advmss 1440 hoplimit 4294967295
fe80::/64 dev eth2  metric 256  expires 20748431sec mtu 1500 advmss 1440 hoplimit 4294967295
fe80::/64 dev sit1  metric 256  expires 21333315sec mtu 1480 advmss 1420 hoplimit 4294967295
default via ::192.88.99.1 dev sit1  metric 1  expires 21333315sec mtu 1480 advmss 1420 hoplimit 4294967295
gateway:~ # 

You will notice that sit1, eth0 and eth2 each have an IPv6 address beginning with 2002: -- All 6to4 IPv6 addresses have that in their most significant 16 bits. The next 32-bits (ce7c:92b4) encode the IPv4 ADDRESS (206.124.146.180). So once you start the 6to4 tunnel, you are the proud owner of 280 IPv6 addresses! In the case shown here, 2002:ce7c:92b4::/48. The SLA is used to assign each interface in INTERFACES, a subnet of 264 addresses; in the case of eth0, 2002:ce7c:92b4:1::/64.

I run radvd on the firewall to allow hosts conntected to eth2 and eth4 to automatically perform their own IPv6 configuration. Here is my /etc/radvd.conf file:

interface eth2 { 
        AdvSendAdvert on;
        MinRtrAdvInterval 3; 
        MaxRtrAdvInterval 10;
        prefix 2002:ce7c:92b4:1::/64 {
                AdvOnLink on; 
                AdvAutonomous on; 
                AdvRouterAddr off; 
        };

        RDNSS 2002:ce7c:92b4:2:2a0:ccff:fedb:31c4 {
                AdvRDNSSOpen on;
                AdvRDNSSPreference 2;
        };                              
};

interface etc4 { 
        AdvSendAdvert on;
        MinRtrAdvInterval 3; 
        MaxRtrAdvInterval 10;
        prefix 2002:ce7c:92b4:2::/64 {
                AdvOnLink on; 
                AdvAutonomous on; 
                AdvRouterAddr off; 
        };

        RDNSS 2002:ce7c:92b4:2:2a0:ccff:fedb:31c4 {
                AdvRDNSSOpen on;
                AdvRDNSSPreference 2;
        };                              
};

Note

radvd terminates immediately if IPv6 forwarding is not enabled. So it is a good idea to include this in /etc/sysctl.conf:

net.ipv6.conf.all.forwarding = 1

That way, if radvd starts before Shorewall6, it will continue to run.

An alternative is to modify /etc/init.d/radvd so that radvd starts after Shorewall6:

# Should-Start: shorewall6

Here is the automatic IPv6 configuration on my server attached to eth2:

webadmin@lists:~/ftpsite/contrib/IPv6> /sbin/ip -6 addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
    inet6 2002:ce7c:92b4:2:2a0:ccff:fedb:31c4/64 scope global dynamic 
       valid_lft 2591995sec preferred_lft 604795sec
    inet6 fe80::2a0:ccff:fedb:31c4/64 scope link 
       valid_lft forever preferred_lft forever
webadmin@lists:~/ftpsite/contrib/IPv6> /sbin/ip -6 route ls
2002:ce7c:92b4:2::/64 dev eth2  proto kernel  metric 256  expires 2592161sec mtu 1500 advmss 1440 hoplimit 4294967295
fe80::/64 dev eth2  metric 256  expires 20746963sec mtu 1500 advmss 1440 hoplimit 4294967295
fe80::/64 dev ifb0  metric 256  expires 20746985sec mtu 1500 advmss 1440 hoplimit 4294967295
default via fe80::2a0:ccff:fed2:353a dev eth2  proto kernel  metric 1024  expires 29sec mtu 1500 advmss 1440 hoplimit 64
webadmin@lists:~/ftpsite/contrib/IPv6> 

You will note that the public IPv6 address of eth2 (2002:ce7c:92b4:2:2a0:ccff:fedb:31c4) was formed by concatenating the prefix for eth2 shown in radvd.conf (2002:ce7c:92b4:2) and the lower 64 bits of the link level address of eth2 (2a0:ccff:fedb:31c4). You will also notice that the address 2002:ce7c:92b4:2:2a0:ccff:fedb:31c4 appears in the RDNSS clauses in radvd.conf; that causes my server to be automatically configured as a DNS server.

The default route is described using the link level address of eth2 on the firewall (fe80::2a0:ccff:fed2:353a).

On my laptop, ursa:

ursa:~ # ip -6 addr ls dev eth0
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
    inet6 2002:ce7c:92b4:1:21a:24ff:fecb:2bcc/64 scope global dynamic 
       valid_lft 2591996sec preferred_lft 604796sec
    inet6 fe80::21a:73ff:fedb:8c35/64 scope link 
       valid_lft forever preferred_lft forever
ursa:~ # ip -6 route ls dev eth0
2002:ce7c:92b4:1::/64  proto kernel  metric 256  expires 2592160sec mtu 1500 advmss 1440 hoplimit 4294967295
fe80::/64  metric 256  expires 21314573sec mtu 1500 advmss 1440 hoplimit 4294967295
default via fe80::202:e3ff:fe08:55fa  proto kernel  metric 1024  expires 28sec mtu 1500 advmss 1440 hoplimit 64
ursa:~ #

Here is the resulting simple IPv6 Network:

Configuring Shorewall

We need to add an entry in /etc/shorewall/tunnels and restart Shorewall:

#TYPE                   ZONE    GATEWAY         GATEWAY
#                                               ZONE
6to4                    net
#LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

Configuring Shorewall6

STOP -- If you have followed the instructions above, you should have a completely functional IPv6 network. Try:

ping6 www.kame.net
ping6 ipv6.chat.eu.freenode.net

If at least one of those doesn't work from your firewall and from any local IPv6 systems that you have behind your firewall, do not go any further until it does work. If you ask for help from the Shorewall team, the first question we will ask is 'With Shorewall6 cleared, can you ping6 kame or freenode?'.

The Shorewall6 configuration on my firewall is a very basic three-interface one.

Key entry in /etc/shorewall6/shorewall6.conf:

IP_FORWARDING=On

/etc/shorewall6/zones:

#ZONE	TYPE	OPTIONS			IN			OUT
#					OPTIONS			OPTIONS
fw	firewall
net	ipv6
loc	ipv6
dmz	ipv6
#LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

/etc/shorewall6/interfaces:

#ZONE   INTERFACE       BROADCAST       OPTIONS
net     sit1            detect          tcpflags,forward=1,nosmurfs
loc     eth0            detect          tcpflags,forward=1
dmz     eth2            detect          tcpflags,forward=1
#LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

/etc/shorewall6/policy:

#SOURCE    DEST    POLICY    LOG LEVEL    LIMIT:BURST
net        all     DROP      info
loc        net     ACCEPT
dmz        net     ACCEPT
all        all     REJECT    info

/etc/shorewall6/rules:

#ACTION         SOURCE          DEST            PROTO   DEST    SOURCE          ORIGINAL        RATE            USER/   MARK
#                                                       PORT    PORT(S)         DEST            LIMIT           GROUP
#
#       Accept DNS connections from the firewall to the network
#
DNS/ACCEPT      $FW             net
#
#       Accept SSH connections from the local network for administration
#
SSH/ACCEPT      loc             $FW
#
#       Allow Ping everywhere
#
Ping/ACCEPT     all             all

#
#LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

Connecting two IPv6 Networks, by Eric de Thouars

Suppose that we have the following situation:

We want systems in the 2002:100:333::/64 subnetwork to be able to communicate with the systems in the 2002:488:999::/64 network. This is accomplished through use of the /etc/shorewall/tunnels file and the “ip” utility for network interface and routing configuration.

Unlike GRE and IPIP tunneling, the /etc/shorewall/policy, /etc/shorewall/interfaces and /etc/shorewall/zones files are not used. There is no need to declare a zone to represent the remote IPv6 network. This remote network is not visible on IPv4 interfaces and to iptables. All that is visible on the IPv4 level is an IPv4 stream which contains IPv6 traffic. Separate IPv6 interfaces and ip6tables rules need to be defined to handle this traffic.

In /etc/shorewall/tunnels on system A, we need the following:

#TYPE     ZONE     GATEWAY        GATEWAY ZONE
6to4      net      134.28.54.2

This entry in /etc/shorewall/tunnels opens the firewall so that the IPv6 encapsulation protocol (41) will be accepted to/from the remote gateway.

Use the following commands to setup system A:

>ip tunnel add tun6to4 mode sit ttl 254 remote 134.28.54.2
>ip link set dev tun6to4 up
>ip addr add 3ffe:8280:0:2001::1/64 dev tun6to4
>ip route add 2002:488:999::/64 via 3ffe:8280:0:2001::2

Similarly, in /etc/shorewall/tunnels on system B we have:

#TYPE     ZONE     GATEWAY        GATEWAY ZONE
6to4      net      206.191.148.9

And use the following commands to setup system B:

>ip tunnel add tun6to4 mode sit ttl 254 remote 206.191.148.9
>ip link set dev tun6to4 up
>ip addr add 3ffe:8280:0:2001::2/64 dev tun6to4
>ip route add 2002:100:333::/64 via 3ffe:8280:0:2001::1

On both systems, restart Shorewall and issue the configuration commands as listed above. The systems in both IPv6 subnetworks can now talk to each other using IPv6.